Microscopy News
  • Microscopy News
    • Press Releases
    • Archive
    • Events/Workshops
    • Newsletter
  • Companies
    • Microscope and Accessiores
    • Imaging Software
    • Dealer
  • Products
    • Microscopes
      • Upright Microscopes
      • Inverted Microscopes
      • Stereo Microscopes
      • Electron Microscopes
    • Software
      • Imaging Software
    • Others
      • Imaging Cameras
      • Systems
      • Medical/Surgical Solutions
      • Accessoires
  • Download Center
    • Instructions
    • Tutorials
    • Brochures
    • Software
  • MediaKit / Sponsoring
  • Archive
  • Suche

Electronic life on the edge

Berkeley Lab scientists discover the edge states of graphene nanoribbons

May 8, 2011 – As far back as the 1990s, long before anyone had actually isolated graphene – a honeycomb lattice of carbon just one atom thick – theorists were predicting extraordinary properties at the edges of graphene nanoribbons. Now physicists at the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), and their colleagues at the University of California at Berkeley, Stanford University, and other institutions, have made the first precise measurements of the “edge states” of well-ordered nanoribbons.

A scanning tunneling microscope determines the topography and orientation of the graphene nanoribbons on the atomic scale. In spectroscopy mode, it determines changes in the density of electronic states, from the nanoribbon’s interior to its edge. Crommie et al, Lawrence Berkeley National Laboratory

A graphene nanoribbon is a strip of graphene that may be only a few nanometers wide (a nanometer is a billionth of a meter). Theorists have envisioned that nanoribbons, depending on their width and the angle at which they are cut, would have unique electronic, magnetic, and optical features, including band gaps like those in semiconductors, which sheet graphene doesn’t have.

“Until now no one has been able to test theoretical predictions regarding nanoribbon edge-states, because no one could figure out how to see the atomic-scale structure at the edge of a well-ordered graphene nanoribbon and how, at the same time, to measure its electronic properties within nanometers of the edge,” says Michael Crommie of Berkeley Lab’s Materials Sciences Division (MSD) and UC Berkeley’s Physics Division, who led the research. “We were able to achieve this by studying specially made nanoribbons with a scanning tunneling microscope.”

The team’s research not only confirms theoretical predictions but opens the prospect of building quick-acting, energy-efficient nanoscale devices from graphene-nanoribbon switches, spin-valves, and detectors, based on either electron charge or electron spin. Farther down the road, graphene nanoribbon edge states open the possibility of devices with tunable giant magnetoresistance and other magnetic and optical effects.

Crommie and his colleagues have published their research in Nature Physics, available May 8, 2011 in advanced online publication.

The well-tempered nanoribbon

“Making flakes and sheets of graphene has become commonplace,” Crommie says, “but until now, nanoribbons produced by different techniques have exhibited, at best, a high degree of inhomogeneity” – typically resulting in disordered ribbon structures with only short stretches of straight edges appearing at random. The essential first step in detecting nanoribbon edge states is access to uniform nanoribbons with straight edges, well-ordered on the atomic scale.

Hongjie Dai of Stanford University’s Department of Chemistry and Laboratory for Advanced Materials, a member of the research team, solved this problem with a novel method of “unzipping” carbon nanotubes chemically. Graphene rolled into a cylinder makes a nanotube, and when nanotubes are unzipped in this way the slice runs straight down the length of the tube, leaving well-ordered, straight edges.

Graphene can be wrapped at almost any angle to make a nanotube. The way the nanotube is wrapped determines the pitch, or “chiral vector,” of the nanoribbon edge when the tube is unzipped. A cut straight along the outer atoms of a row of hexagons produces a zigzag edge. A cut made at a 30-degree angle from a zigzag edge goes through the middle of the hexagons and yields scalloped edges, known as “armchair” edges. Between these two extremes are a variety of chiral vectors describing edges stepped on the nanoscale, in which, for example, after every few hexagons a zigzag segment is added at an angle.

These subtle differences in edge structure have been predicted to produce measurably different physical properties, which potentially could be exploited in new graphene applications. Steven Louie of UC Berkeley and Berkeley Lab’s MSD was the research team’s theorist; with the help of postdoc Oleg Yazyev, Louie calculated the expected outcomes, which were then tested against experiment.

Chenggang Tao of MSD and UCB led a team of graduate students in performing scanning tunneling microscopy (STM) of the nanoribbons on a gold substrate, which resolved the positions of individual atoms in the graphene nanoribbons. The team looked at more than 150 high-quality nanoribbons with different chiralities, all of which showed an unexpected feature, a regular raised border near their edges forming a hump or bevel. Once this was established as a real edge feature – not the artifact of a folded ribbon or a flattened nanotube – the chirality and electronic properties of well-ordered nanoribbon edges could be measured with confidence, and the edge regions theoretically modeled.

Electronics at the edge

“Two-dimensional graphene sheets are remarkable in how freely electrons move through them, including the fact that there’s no band gap,” Crommie says. “Nanoribbons are different: electrons can become trapped in narrow channels along the nanoribbon edges. These edge-states are one-dimensional, but the electrons on one edge can still interact with the edge electrons on the other side, which causes an energy gap to open up.”

Using an STM in spectroscopy mode (STS), the team measured electronic density changes as an STM tip was moved from a nanoribbon edge inward toward its interior. Nanoribbons of different widths were examined in this way. The researchers discovered that electrons are confined to the edge of the nanoribbons, and that these nanoribbon-edge electrons exhibit a pronounced splitting in their energy levels.

“In the quantum world, electrons can be described as waves in addition to being particles,” Crommie notes. He says one way to picture how different edge states arise is to imagine an electron wave that fills the length of the ribbon and diffracts off the atoms near its edge. The diffraction patterns resemble water waves coming through slits in a barrier.

For nanoribbons with an armchair edge, the diffraction pattern spans the full width of the nanoribbon; the resulting electron states are quantized in energy and extend spatially throughout the entire nanoribbon. For nanoribbons with a zigzag edge, however, the situation is different. Here diffraction from edge atoms leads to destructive interference, causing the electron states to localize near the nanoribbon edges. Their amplitude is greatly reduced in the interior.

The energy of the electron, the width of the nanoribbon, and the chirality of its edges all naturally affect the nature and strength of these nanoribbon electronic states, an indication of the many ways the electronic properties of nanoribbons can be tuned and modified.

Says Crommie, “The optimist says, ‘Wow, look at all the ways we can control these states – this might allow a whole new technology!’ The pessimist says, ‘Uh-oh, look at all the things that can disturb a nanoribbon’s behavior – how are we ever going to achieve reproducibility on the atomic scale?'”

Crommie himself declares that “meeting this challenge is a big reason for why we do research. Nanoribbons have the potential to form exciting new electronic, magnetic, and optical devices at the nanoscale. We might imagine photovoltaic applications, where absorbed light leads to useful charge separation at nanoribbon edges. We might also imagine spintronics applications, where using a side-gate geometry would allow control of the spin polarization of electrons at a nanoribbon’s edge.”

Although getting there won’t be simple — “The edges have to be controlled,” Crommie emphasizes — “what we’ve shown is that it’s possible to make nanoribbons with good edges and that they do, indeed, have characteristic edge states similar to what theorists had expected. This opens a whole new area of future research involving the control and characterization of graphene edges in different nanoscale geometries.”

###

“Spatially resolving edge states of chiral graphene nanoribbons,” by Chenggang Tao, Liying Jiao, Oleg V. Yazyev, Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang, Rodrigo B. Capaz, James M. Tour, Alex Zettle, Steven G. Louie, Hongjie Dai, and Michael F. Crommie, appears in Nature Physics and is available online at www.nature.com/nphys/index.html . Funded at Berkeley Lab by DOE’s Helios Energy Research Center, this collaborative project was supported jointly by the Office of Naval Research, the National Science Foundation, and the U.S. Department of Energy’s Office of Science.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit

www.lbl.gov

Share this post
  • Teile auf Facebook
  • Teile auf Twitter
  • Teile auf Google+
  • Teile per Mail
Sponsors
Related Posts
Archive

WITec refreshes its website www.witec.de

https://microscopy-news.com/wp-content/uploads/2017/01/fd45d6c858ed43477f37690b5a62b10e.jpg 135 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:45:102017-01-17 10:45:10WITec refreshes its website www.witec.de
Archive

Olympus Introduces New Microscope Objectives for Ultra-Deep Biological Imaging

https://microscopy-news.com/wp-content/uploads/2017/01/617bc24f81d3715820c3e91723ce1263.jpg 967 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:44:242017-01-17 10:44:24Olympus Introduces New Microscope Objectives for Ultra-Deep Biological Imaging
Archive

Andor launches KOMET 7 – The most advanced and powerful software solution for analysis, data management and presentation of comet assay samples

https://microscopy-news.com/wp-content/uploads/2017/01/516b76019f18322d8d3a9ddc96987741.jpg 300 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:44:242017-01-17 10:44:24Andor launches KOMET 7 – The most advanced and powerful software solution for analysis, data management and presentation of comet assay samples
Archive

Advanced Thin Films Enters Medical Laser Optics Market

https://microscopy-news.com/wp-content/uploads/2017/01/543ba9c56fe57e856dc7f252e2ebd3ba.jpg 466 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:43:462017-01-17 10:43:46Advanced Thin Films Enters Medical Laser Optics Market
Archive

Module transforms Raman microscopes into high throughput chemical analyzers

https://microscopy-news.com/wp-content/uploads/2017/01/7423894303b540804bd4b9ded95ac7a1.jpg 228 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:43:332017-01-17 10:43:33Module transforms Raman microscopes into high throughput chemical analyzers
Archive

Motic Microscopes launches the new BA410E for biomedical applications

https://microscopy-news.com/wp-content/uploads/2017/01/ca9ed333736eb38ce4abbffcee37be60.jpg 260 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:42:462017-01-17 10:42:46Motic Microscopes launches the new BA410E for biomedical applications
Archive

R&D 100 Award 2014 for ZEISS ELYRA P.1 with 3D-PALM

https://microscopy-news.com/wp-content/uploads/2017/01/2ed54dfbb5613dc8894327c8185309c1.jpg 175 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:42:442017-01-17 10:42:44R&D 100 Award 2014 for ZEISS ELYRA P.1 with 3D-PALM
Archive

Motic Microscopes presents the new AE31E for microbiology

https://microscopy-news.com/wp-content/uploads/2017/01/944a198042025732e6e8fb5a715d48c5.jpg 243 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:41:572017-01-17 10:41:57Motic Microscopes presents the new AE31E for microbiology
Archive

CRAIC Technologies Website: A Resource for UV-Visible-NIR and Raman Microspectroscopy

https://microscopy-news.com/wp-content/uploads/2017/01/3725b94ba62d8e2205f5f20b3cdee1ee.jpg 463 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:41:372017-01-17 10:41:37CRAIC Technologies Website: A Resource for UV-Visible-NIR and Raman Microspectroscopy
Archive

Imaging companies in Europe shoulder-to-shoulder with life scientists

https://microscopy-news.com/wp-content/uploads/2017/01/1affabb625a5c37519bafa89fedc162e.jpg 86 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:41:102017-01-17 10:41:10Imaging companies in Europe shoulder-to-shoulder with life scientists
Archive

Semrock Releases 20th Edition Master Catalog

https://microscopy-news.com/wp-content/uploads/2017/01/61e12630a94a26e3e618905ce9de549a.jpg 234 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:40:582017-01-17 10:40:58Semrock Releases 20th Edition Master Catalog
Archive

World’s Smallest Commercially Available Ball Screw!

https://microscopy-news.com/wp-content/uploads/2017/01/59d9386a4a7887c0e4775572b7f7511c.jpg 262 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:39:522017-01-17 10:39:52World’s Smallest Commercially Available Ball Screw!
Archive

NIST Announces New Competition for Advanced Manufacturing Planning Awards‏

https://microscopy-news.com/wp-content/uploads/2017/01/3486cdac57a29cec43d7506599bba9f1.jpg 188 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:39:482017-01-17 10:39:48NIST Announces New Competition for Advanced Manufacturing Planning Awards‏
Archive

XIMEA unveils Thunderbolt™ 2 high speed cameras with IMX174 and CMV20000

https://microscopy-news.com/wp-content/uploads/2017/01/341633931c01418c4fa8e0a90a8236d4.jpg 139 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:39:052017-01-17 10:39:05XIMEA unveils Thunderbolt™ 2 high speed cameras with IMX174 and CMV20000
Archive

New Blackfly® USB3 Vision™ CCD Camera Family Provides Easy Interface Transition

https://microscopy-news.com/wp-content/uploads/2017/01/082c31c09a15eff9e43b5c2fcf5f38cd.jpg 287 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:39:032017-01-17 10:39:03New Blackfly® USB3 Vision™ CCD Camera Family Provides Easy Interface Transition
Archive

Digital Surf and Image Metrology join forces

https://microscopy-news.com/wp-content/uploads/2017/01/3058648b93257cab2f2ca0eaad966c4b.jpg 174 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:38:262017-01-17 10:38:26Digital Surf and Image Metrology join forces
Archive

Bessel Beam Plane Illumination Microscopy Enables Fast 3D Volume Imaging

https://microscopy-news.com/wp-content/uploads/2017/01/70d120c9518cf134343f93d7a2adf4d3.jpg 181 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:38:142017-01-17 10:38:14Bessel Beam Plane Illumination Microscopy Enables Fast 3D Volume Imaging
Archive

Dolomite´s new microfluidic system showcases droplet merging at nanoliter sample scale

https://microscopy-news.com/wp-content/uploads/2017/01/22b06d4094468fc910406cd44d96ec1f.jpg 181 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:37:192017-01-17 10:37:19Dolomite´s new microfluidic system showcases droplet merging at nanoliter sample scale
Archive

Point Grey´s Latest Blackfly® GigE PoE Camera Features Popular High Sensitivity VGA CCD

https://microscopy-news.com/wp-content/uploads/2017/01/a5d0c77f7619812a129b2a4e6a9cb90b.jpg 234 350 otmaro https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png otmaro2017-01-17 10:36:522017-01-17 10:36:52Point Grey´s Latest Blackfly® GigE PoE Camera Features Popular High Sensitivity VGA CCD
Archive

Point Grey Launches New Grasshopper®3 Family of High Resolution GigE Vision™ PoE Cameras

https://microscopy-news.com/wp-content/uploads/2017/01/a77db128b10a613c26b9e4dbea5dae02.jpg 220 350 Ottermedia https://microscopy-news.com/wp-content/uploads/2017/01/Microscopy-news_logo_microscope_news.png Ottermedia2017-01-17 10:36:392017-01-17 10:36:39Point Grey Launches New Grasshopper®3 Family of High Resolution GigE Vision™ PoE Cameras
ZurückWeiter

Sponsors

Follow us

Products

  • Upright Microscopes
  • Inverted Microscopes
  • Stereo Microscopes
  • Electron Microscopes
  • Imaging Cameras
  • Imaging Software
  • Systems
  • Medical/Surgical Solutions
  • Accessoires

Navigation

  • Microscopy News
  • MediaKit / Sponsoring
  • Contact
  • Privacy
  • Imprint

Contact

Microscopy News Portal
Am Ginster 6
21409 Oerzen, Germany

Email:
info@microscopy-news.com

Search

© Copyright - Microscopy-News.com 2017 | Germany
  • Facebook
  • Twitter
  • Mail
  • Contact
  • Privacy
  • Imprint
CUORE Installs Minus K Technology’s “Negative-Stiffness” Vibration... Karlsruhe Invisibility Cloak: Disappearing Visibly
We use cookies to improve your experience with our site.OKLearn more
Nach oben scrollen